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Exchange-correlation correction to the dielectric function of 
the inhomogeneous electron gas 

Comell University. laboratory of Atomic and Solid State Physics. Ithaca. NY 148.53, 
USA 

Received 10 December 1991. in final form 25 September 1992 

AbslraeL Exchange<orrelation (xc) and band s l ~ e l u r e  mrrections to [he dielectric 
matrix are investigated simultaneously within the framework of non-local density 
functional lheory. The xc mrrect im is ralculaled in the weighted density approximation 
and band SlNCLUre effeas are taken into account in wcond order in llie psrudopotenlial. 
Particular attention is devoted 10 the question of whether or not the minimum in the 
plasmon dispenion in caesium is connected with the hump in lhe static structure faclor 
of the homogeneous electron gas near q = 2 1 ; ~ .  as concluded in a previous paper 
using frcqucnq-momentum analysis. It was found that wch a hump may lead to 
anomalies (in alkaline metals most probably minima) at those q that arc solutions of the 
equation IG - ql = 2kp, where G Wr any reciprocal lattice vector and kp is lhc Fermi 
momentum. In caesium, the location of the dominating minimum agrees with that of the 
experimental minimum. but its depth varies strongly for different homogeneous electron 
gas appmximations. 

1. Introduction 

The random phase approximation @PA) for the dielectric properties of the 
inhomogeneous electron gas (IHEG) gives satisfactory results for high densities and 
small wavevectors q (e.g. for optical properties of high-density simple metals and 
semiconductors). On the other hand, consideration of X C  effects beyond the RPA 
within the homogeneous eIectron gas p E G )  modcl reveals a peak in the static 
structure factor near q = 2kF whose size differs in different treatments 11-71 and 
which is absent within the RPA. In principle the plasmon dispersion is a sensitive 
probe to xc effects, but the region q x 2k ,  is not accessible to the plasmon because 
it ceases to exist for q > qc, the cut-off wavevector, which is of the order of k ,  at 
metallic densities. Due to umklapp processes, however, this structure can influence 
the plasmon dispersion at small q.  Therefore we have to consider xc effects and 
inhomogeneity simultaneously. In some previous work [8,9] this has been done using 
frequency momentum analysis. In this way we obtained within the weighted density 
approximation (WDA) a simple formula for the centre of gravity of the loss function 
which illustrates the important role of umklapp processes. However, by frequency 
momentum analysis the frequency dependence of the dielectric function cannot be 
calculated explicitly. In the present paper we develop a theory for the dielectric 
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function which goes over into the RPA in the high-density limit and is correct in the 
small-q and the large-q limit for mnishing inhomogeneity. This is achieved by using 
non-local density functional (OF) theory. Some previous treatments in the spirit of 
our goals used the local density approximation (LDA) [lo, 111. As shown below, this 
approximation fails qualitatively in some limiting cases. 

We apply our theory to the plasmon dispersion of caesium which is a good 
candidate for pronounced XC effects because of its low valence electron density 
(R,  = 5.62). Indeed Cs exhibits a negative dispersion constant [25], which cannot be 
explained either within the RPA inckding the inhomogeneity or within the HEG model 
including xc effects. Instead both effects must be considered simultaneously. 

This paper is organized as follows. In section 2 we review the theory of the 
dielectric function within DF theory, and in section 3 some approximations for the xc 
correction are discussed. The only one satisfying some rigorous constraints, namely 
the WDA, is applied in section 5 to the plasmon dispersion of caesium. In section 4 
the calculation of the plasmon dispersion within second-order perturbation thcory in 
the pseudopotential is described and in section 6 we summarize our results. 

2. Non-local density functional theory of the exchange-correlation correction 

2.1. DqFnilions 

In linear response theory of the electron gas one has to distinguish bcnvecn an 
external perturbation produced by a test charge (distinguishable from the clcctrons of 
the system) and by an electron (which causes exchangexorrelation effects). Likewise, 
the particle that experiences the screened perturbation can be a test charge or 
an electron. Ve  confine ourselves here to the case of a test charge as external 
perturbation. This includes electron loss spectroscopy, if the energy of the probe is 
so high that it may be considered as distinguishable from the sample electrons. 

Thus we have one kind  of external potential 6@,(9) and two kinds of scrccned 
potentials 6@‘,(q) and 6 Q k ( q ) ,  which act on test charges and electrons, respectively. 
Consequently we define two response functions 

6 4 9 )  = x c r ( q , q ’ ) 6 @ m ( q ’ )  or 6n = a60, (1) 

6 n ( g ) =  x x ( q , q ’ ) S @ ; ( q ’ )  or 6 n =  ~ 6 0 : .  (2)  

9’ 

-4’ 

The third possible rclatian which connects 6 n  with 6@, is not in general use. In 
the following we mainly use the matrix natation givcn on the right of (1) and (2). 
Response functions a, x (and the later defined E,F,C,V) denote matrices, whereas 
6n and 6@ are vectors. The q-sum runs over the fine mesh produced by pcriodic 
boundary conditions over the normalization volume V .  In case of lattice periodicity 
the sums over the fine g-mesh reduce to sums over reciprocal lattice vectors G and 
the arguments q ,  q‘ of the response functions have the form k + G, k + G’, where 
k lies within the first Brillouin zone. 

Instead of a or x, the system response can be characterized by dielectric matrices 
( D W  

6@, = ~ - ‘ 6 @ ~ ~  (3) 
6@; = (ee)-’6Q,. (4) 
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Both DMs are appropriate for different physical quantities. Whereas z can be applied 
to calculate phonons, optical properties (reflectivity etc) and loss functions for high- 
energy electrons and photons (Compton effect), @ has to be used for screened 
potentials which are to be inserted into the Schrodinger equation. In all these 
definitions the time or frequency dependence is not explicitly indicated. 

22. Calculation of h e  dielectric marrices 

The basic difference between 64, and 64: is that the latter comprises an induced 
xc potential having the form 

6@,(q) = x F ( q , q ' ) 6 n ( q ' )  or 64, = F6n. (5) 
q' 

In r-space 

6@=(r)  = dr'F'(r,r ')&n(r').  J 
The matrix F is determined below. Both quantitics have in common the induced 
Hartree potential (atomic units h = m = e = 1 are used) 

6@,(q) = (47 r /qz )  6n(q)  or 64, = V6n.  (6) 

For convenience we defined a diagonal matrix V with elements uq = 4 r / q z .  From 
their definition follows that 

64, = 64,, + 6aH 
64; = 64, + 6QH + 6Q, 

and using (5) and (6) 

64, = 64,, + V6n. 
6 4 2  = 64,, + (V + F)6n.  

Inserting (1) into (9) and (10) and comparing with (3) and (4) we obtain 

e-1 = I + V a  

(ee)- '  = I + (V + F ) a .  

Because not a but x is directly computable (see below), it is desirable to express the 
dielectric matrices in terms of x instead. This is realized by insertion of (2) into (9) 
and (10) and by comparing with (50) and (6). We find 

E = I - V(I - xF)-'x 
ee = I - (V  + F)x. 

For F = 0 (neglect of xc effects) E and are identical. Furthermore, in the limit 
of an HEG all matrices are diagonal and commonly known expressions are retained. 
Frequently, the xc correction of the HEG is expressed in terms of 

G Y q )  = - ( l / u q )  FO(q ,d  - ( l / u q ) P ( d .  (15) 
Calculations of the dietectric properties of atoms, surfaces and other non-bulk 

systems are usually performed at least partly in r-space. All formulae can be adapted 
to the corresponding case by Fourier-transform of some coordinates in r-space. 
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2.3. Calculation of x and F 
The input quantities to this theory are F and x. which are directly accessible in DF 
theory. x reads [12] 

where Ik) and E, are one-particle wavefunctions and energies, respectively, evaluated 
in DF theory, k comprises all quantum numbers, f ( E )  is the Fermi distribution 
function, and wc = w + Oi. According to DF theory x as given by (16) is exact in the 
static limit. The reason is that for the definition (2) of x we need only the induced 
density. But the density is well defined in DF theory, despite the fact that x contains 
the auxiliary quantities Ik) and E, ,  which have rigorously speaking no direct physical 
meaning. 

Now we turn to the determination of F. The xc potential is a functional of the 
dcnsity. The change 6Qm of this functional under a variation 6n of the density can 
be expressed in terms of the functional derivative 

Comparison with (5) gives the result we are looking for [lo] 

The second equality considen the fact that Q, itself is a functional derivative of the 
xc energy E,. 

Even if we would have the exact xc energy functional, (17) would be correct in 
the static limit w = 0 only. The inclusion of the w dependence might be possible 
within the time-dependent DF scheme (see [13]), but it is not straightforward and 
easy. For a homogeneous system, however, there are interpolation procedures for the 
inclusion of the w dependence ([13]). But these schemes cannot be applied to the 
off-diagonal elements of F, which provide here the main effect (see section 5). 

3. Some approximations for F 

3.1. Rigorous boundary condilions 

As seen from (17), each xc energy functional E,[n] generates an xc-correction 
function F. On the basis of several approximations for E,[n] found in the literature 
( for reviews see e.g. [16]-[18]) we calculate in this section the corresponding xc 
correction F ( q ,  q ' )  and investigate whether this approximation obeys certain rigorous 
conditions. For bulk systems we require that in the HEG limit the XC corrcction 
function @ ( q )  as defined in (15) satisfies conditions known from HEG theory [14], 
in particular 

lim G"(q) = [ l -  g(O)] 
9-m 
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where g ( r )  is the pair correlation function of the HEG. For finite frequencies a factor 
$ has to be added on the right hand side of (19) [15], but for the sake of internal 
consistency this is not considered here because we treat the xc correction F in the 
static limit. 

For 
convenience we discuss it in r space. The xc potential far outside the metal must 
approach the classical image potential 

For metal surfaces we have an additional rigorous condition for F. 

u,(z) = -1/4z 

where z is the coordinate perpendicular to the surface. 
independent of n ( ~ )  and F ( T , T ’ )  vanishes because of (17). 

Consequently uz is 

lim F(T ,T ’ )  = 0. (20) 
*-m 

Furthermore according to (17) F ( r , r ’ )  satisfies the symmetry relation F ( r , r ’ )  = 
Ffr‘ .  T). 

\ 

Far outside an atom the xc potential must approach 

where T is the distance from the nucleus. This implies 

lim F ( r , r ’ )  = 0. (21) 7-m 

For atoms additionally the limit of having just one electron is of relevance. If we 
apply DF theory to this case, the Coulomb potential and the xc potential must cancel 
in order to retain the bare external potential, i.e. 

giving 

F ( r , r ’ )  = -l/lr --’I. (22) 

This condition is a test of whether self-interaction corrections are properly taken into 
account. 

3.2. Local densiy approximation 

The simplest and most widely used approximation is the local density approximation 
(LDA), in which the XC energy of the IHEG is constructed from the XC energy per 
particle e: of the HEG and the density n ( r ) ,  by replacing the constant density of the 
HEG by n(r ) ,  i.e. 

E, = i d r  n ( r ) & ( n ( r ) ) .  (23) 

The second functional derivative reads 
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and the Fourier transform with respect to T and r' gives 

where f(q) is the Fourier transform of f(r). 
In the HEG limit with density n we obtain 

p(q,q') = 6,,,,(dZ/dnZ) [nek(n)] 5 6q,q,@(q). (26) 

Thus p ( q , q ' )  is diagonal, @ ( q )  is constant (i.e. independent of 4 )  and Cu(q) = 
-(qZ/47r) p(q) is purely quadratic. @ ( q )  fulfills for small q the requirement (18), 
hut it fails to obey the requirement Cor large q (19), which is important for our 
present application. Due to umklapp processes the HEG characteristics are necessary 
for q > 2kF also. It should be noted that the xc correction function always appears 
together with the factor xu( q ,  w). The total xc correction term reads 

r " ' (q)xu(q,w)  = -(47r/q2) Gu(q)xu(q,w)  

The convergence of this term can he discussed easily in the. limit w = 0 for the 
HEG. Because x"(q,O) converges as q-z  for large q, the total xc term in the LDA 
converges, hut only as q-2 and not as q-4, as it should according to (19). 

Far outside metal surfaces the density falls off exponentially: n o( exp(-er). 
IC we adopt the Slater or Kohn-Sham-Gaspar approximation with e; m n113, we 
obtain ws o( n113 and using (24) we have f o( n-'I3. In v-space this m a n s  
that v,(z) o( exp(-+) and f ( z )  m exp(+z). Consequently, thc IDA does 
not only fail in reproducing the image potential, but it also violates the boundary 
condition (20). Instead f diverges exponentially. But as already discussed in the HEG 
limit, this does not necessarily lead to divergences in measurable quantities. 

3.3. Gradient expansion approximations 

Just as the U)A, the gradient correction is not rigorous mathematically. For the 
calculation of the one-particle energies from the Kahn-Sham equations the lowest- 
order gradient correction usually gives no improvement over the LDA (See e.g. [16], 
[17]). Now we investigate how it influences the xc correction to the DMs. In the 
gradient approximation the following term 

E, = E: + d r  b ( n ( r ) ) l V n ( r ) l z  (27) J ,  
is added to the LDA result. Because for the function b(n)  there aTe a lot of widely 
differing expressions [18], we leave it unspecified. Functional differentiation and 
bur ie r  transformation gives in the HEG limit [19] 

Using (15) we find 

Gu(q)  = - ( 1 / 4 ~ )  (dz/dn2)  nek(n)qz - ( 1 / 2 ~ )  b(n)qJ. (29) 
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Because b(n) > 0 for all approximations available in the literature, the second term 
is negative, whereas the first one (LDA term) is positive. Therefore G “ ( q )  starts 
quadratic in accordance with (18) but it tends to minus infinity as q4 for large q and 
does not obey (19). In a sense, the gradient term is even worse than the LDA for large 
q. As mentioned above, the total xc correction term Foxu must mnverge as q-4. 
In the LDA convergence is reached, but as q-2.  Including the gradient term, p x u  
becomes canstant and as a consequence ee does not converge to unity for w = 0 and 
large q as it should. 

The simplest possible extension of the previously described gradient expansion is 
the additional inclusion of a term 

- J ,  dT b(n( r ) )n ( r )An( l . )  

This extra term modifies of course the detailed form of F ( q , q ’ ) ,  but in the HEG 
limit it modifies only the prefactor of the q4 term of G”(q)  in (28). Because the 
form of b( n)  is very unclear, it is not possible to decide whether the additional term 
gives any improvement at all. At any rate, it does not produce the required limiting 
behaviour for large q.  

In order to overcome the disadvantages of the gradient expansion regarding the 
energy spectrum, modified functionals have been developed [20,21], which include 
density gradients to all orders. We investigate here the functional by Langreth and 
Mehl 121) 

E,  = E 2  + a l d v  n-4/3(r)lVn(r)lz [ 2 e ~ p ( - d n - ~ / ‘ ( ( ~ ) l V n ( r ) / )  - t ]  

where U and d are constants. For d=O and 

(30) 

= b ( n )  (31) 

we recover the ordinary gradient expansion (27). The resulting formula for F ( q , q ’ )  
is too lengthy to be given here. In the HEG limit, however, we obtain 

#’(q,q’) = P’~’oc(q,q’) + + a n  -413 q 2 

which agrees completely with the ordinary gradient expansion (29), if (31) is fulfilled. 
Thus, the amendment by Langreth and Mehl does not remedy the defect of the LDA 
and of the ordinary gradient expansion with respect to the XC correction function for 
the DMS, although the energy spectrum is remarkably improved 121). This may be 
understood as follows: if the first derivative of a functional 2) ( T )  IS satisfactory, 

this is not necessarily true for the second derivative 

3.4. Expansion for almost constant density 

For almost constant density E , [ n ( r ) ]  can be expanded around the mean density nu 

(, ) ,  
F(T ,T ’ )  . 0 

as 
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where 6n(r )  = n ( r )  - nu. The second functional derivative reads 

F ( r , r ’ ) =  ( 1 / v ) F , + f l ( l r - r f 1 )  

where 

Fu = (I/V)(dZ/dn:)E,[n,] - p(q = 0). 

Fourier transformation with respect to T and r’ results in 

(33) 

F ( q , q ’ )  = 6q,06q,,oFo + 6,,,,P(q) (34) 

where (the Fourier transform of quantities with finite range like p ( r )  is defined 
without the factor 1 / V  contrary to the definition for bulk properties given in 
section 2.1) 

p (  q )  = J d r  F ( T )  

The constant F ,  vanishes if p(q) fulfils the compressibility sum rule. Obviously, 
F depends only on the mean density and therefore the HEG limit is identical with 
the general result (34). This is not surprising because we performed an expansion in 
second order around the HEG and then we took a second derivative with respect to the 
density. Therefore the boundaly conditions (18) and (19) are fulfilled automatically. 
Because this type of expansion is reasonable for bulk material only, the other 
conditions cannot be imposed upon F. We did not make use of this approximation 
in our numerical calculations for bulk alkalis because it is essentially the zero-order 
contribution of the more general expression provided by the WDA discussed below. 

3.5. Weighted densip approximation 

There is an formally exact expression for E, which reads [U] 

E, = - 2 ‘1  d r  J d r ’ - n ( r ’ ) n ( r ’ + r ) [ B ( r ’ , r ’ + r ) - l ]  (35) 

where the pair correlation function g ( r , r ‘ )  is usually unknown. The bar Over g (and 
in the following also over other HEG quantities such as S and N) means averaging 
over the coupling constant X between X = 0 and X = ez with density n(7)  held 
fixed. For g we make the following plausible approximation 

g ( r , r ’ )  = # ( I T  - r ’ l ; f i ( r , r ’ ) )  (36) 

where g u ( r ;  n )  is the pair correlation function of the HEG with density n. 
In the weighted density approximation (WDA) (221, f i ( r , r ’ )  is replaced by a single 

variable function 5 ( r ) ,  which is determined by means of the sum rule for the XC 
hole. This leads to the implicit equation IS] 
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S,  is the static structure factor of the HEG connected with gu( P) by 

(38) 
-[S,(n)-11 1 = J d r e i q r [ g " ( r ; n ) - l ] .  
n 

For the alkali metals all reciprocal lattice vectors G are larger than Zk, and therefore 
we have S ,  2: 1 and because of (37) iL 2: n,. In any bulk system 6 = nu might be 
a useful first approximation because the factor [ 1 - SG] cuts off the higher Fourier 
coefficients and thus 6 ( r )  is always smoother than n ( r ) .  It should be noted that 
f i  = nu has to be inserted ufer the functional derivative has been taken. 

For 6 = nu (the result for general iL(r) is given in appendix A) we obtain from 
(17),(35)-(37) and Fourier transform: 

where H, is defined by 

1 1  4x fi, = 1 d r  eiqP g (r)- 11 = - - / d q '  [s,, - 11 n (27r)3 I Q  - Q ' 1 2  

the dimensionless operators D('") by 

and the constants A(") by 

All HEc-quantities must be taken at the density nu, which is not explicitly indicated. 
For the HEG we obtain a diagonal matrix with elements 

By means of (15) this formula defines Cu(q). Once the dependence of S on the 
coupling constant e2 is known, (41) can serve as the link between @ ( q )  and S(q) ,  
which is necessaly for a self-consistent determination of Cu(q) according to Singwi 
el al. This has been done by Chacon and 'Ihrazona [SI using a scaling assumption for 
the calculation of 9. Observe that the first term of (41) agrees with the corresponding 
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relation of Singwi er a1 [l] apart from the average over the coupling constant. 
Considering Ru = ( 2 / n ) ~ k ,  the q = 0 limit of (41) can he rewritten as 

F(')(O,O) = (d'/dn')[n~;] 

what agrees exactly with the expression (27) for F(')(q,q) in the LDA. In other words, 
in the LDA the function F(')(q,q) is approximated by the constant value at q = 0 of 
the WDA result. 

For any reasonable choice for 9, G" determined from (41) and (15) satisfies the 
boundary conditions (18) and (19). The conditions (20),(21), and (22) can he required 
for the general expression for F ( r , r ' )  given in Appendix A only, because with the 
additional assumption j l ( r )  = n, application is limited to bulk material. These 
constraints are guaranteed by the fact that the xc potential satisfies the corresponding 
conditions [22]. Because the WDA is the only approximation to fulfill all our boundary 
conditions (18-22), we will use it for the numerical calculation presented in section 5. 
In appendix B we discuss a semilocal approximation which is often used for the xc 
potential U,(.) but which fails for F ( r , r ' )  in the same way as the LDA. 

4. Plasmon dispersion in second-order perturbation theory 

4.1. Mncrmcopic dielectric function 

We now restrict ourselves to systems with lattice periodicity. As mentioned in Sect. 
2.1, then all matrices in qspace have a form like this: 

'p,@ = 'k+G,h+G' %.G'(')  

i.e. all matrix elements are indexed by reciprocal lattice vectors G and G'. (The 
dependence on k and w will often not he indicated explicitly.) The macroscopic 
dielectric function follows from the microscopic DM using 

It follows from (11) and (12) that 

where te is given by (14) in terms of x and F. If we assume the electrons arc subject 
to a weak pseudopotential W ( r ) ,  the elements of the matrix x can he calculated 
by perturbation theory. The explicit results are given elsewhere [24] and will not 
he repeated here. Here it suffices to mention, that all diagonal and off-diagonal 
elements are of zeroth and first order in W, respectively. Knowing this we can invert 
the matrix te in second order in W and insert the result into (43) and (42). This 
procedure in the special case of the WA is described in [24]. The result is 
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where 

%OS 

e2VG is identical with the dielectric function ee(k + G) for the HEG. The numerator 
E',,, can be interpreted as the macroscopic dielectric function resulting from te using 
the analogue to (42) calculated in second order in W .  

4.2. Plasmons 

The electron energy loss function P ( q , w )  can be calculated from tmc using 

P ( q , w )  = -1m ( l /Emac(q ,w) )  = ~ ~ ~ m a c / ( ( R ~ ~ m a c ) z  + (h,,ac)*). (47) 

For weakly inhomogeneous systems and q smaller than the critical wavevector qE, P 
versus w is sharply peaked near the zero of Re emac. Therefore we define the plasmon 
frequency wq by 

Re Emac(QrWq) = 0. 

If we split up wq into the plasmon frequency of the I-IEG w," defined by 

Ret'(q,w;) = 0 

and a correction 6wq originating from the inhomogeneity, we have 

wq = U," + 6wq. (48) 

The correction can be calculated from [24] 

6wq = -[Re€,,, ( 9 ,  w )/(d/dw )Re& 9, w )I + 0(w3).  (49) I I  w=wo 

Insertion of from (44) into (49) leaves us with 

6wq = -[Rett,(~,w)/(d/dw)Rec'."(q, U)] + o(w3). (50) 

Obviously, (SO) differs from (49) only in replacing E by E'. 
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5. Application to the plasmon dispersion of caesium 

As a first test of the XC correction in the WDA described in section 3.5 we apply it 
to the plasmon dispersion of caesium. The essential contributions to are the one- 
particle susceptibility x and the XC correction F. In order to make the calculations 
feasible we use the following approximations. 

(i) For the calculation of x ,  the inversion of E ,  and the calculation of the 
plasmon frequenq we use the formula derived in section 4 valid in second-order 
perturbation theory in the (local) pseudopotential. For simplicity only the (110) 
star of reciprocal lattice vectors is taken into account. The Fourier component 
W,,, = 2.57 x lO-*Hartree (261 was fitted to the Fermi surface. We are aware 
of the fact that because of low-lying unoccupied d bands, this simple picture may fail 
if excitations into these bands are important. Moreover, because &,,,/E, is 0.44, 
perturbation theory in second order is questionable. Furthermore, the idea cannot be 
excluded that the electron cores, which are increasingly polarizable with increasing 
shell number, modify the plasmon dispersion. It is not very likely, however, that 
the negative dispersion for Cs is caused by core polarization alone, because for Ba, 
which bas the same type of core states, the dispersion of the (genuine) plasmon 
peak is positive. In view of these dilliculties, the numerical results for Cs should be 
considered as a qualitative estimate only. 

(ii) For the calculation of the xc correction F we need nG, the Fourier transform 
of the electron density, and s,, the static structure factor of the HEG averaged over 
the coupling constant. For the sake of internal consistency nG is evaluated in linear 
response theory from the same W, that has been used for x. Because its dependence 
on the wupling constant is usually not investigated or given, we were forced to replace 
Sq by S,. For S, several approximations taken from the literature were used. 

1.5 , PLASMON DISPERSION OF CESIUM IN THZ RPA 

1 full: homogeneous system 
dashed: direction <loo> 
dotted: direction < I  10> 

laEh-dotied: direciion <1 1 1  > 
4l 

/ I  
crosses: experiment01 , 

+ + 
t r i  

Figure L Anisotmpy of the 
plasmon dispemion of Cs within 
the WA forq parallel to (100) 
(dashed), (110) (dolled), and (111) 
(dash-dotted). The full line is 
Ule m u l l  lor lhe HEG. CroSSeS 
indicate experimental values [25] 

+ far mlvcwstalline material. lb gel . , ,  . , .  
rid of the influence nf the &re 

0.9 i-, . ' - - ~ - ~ ~ - - , ~ - . , - - ~ ~ - - , - ,  polarization all dispersion awes  
0.0 0.2 0.4 0.6 0.8 arc normalized to unity at q = 0, 

i.e. divided by the value at q = 0. O=q/kF 
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PLASdl0.Y DISPERSION OF CESIUM I.V THE LpA 
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dashed: direction t100> 
dotted: direction ( 1  lo> 

dcsh-dotted: direction <1 11; 
CTOES~S: experimental 
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._(._ ~ .. ,...,... ~~. ,. . 1 Figure 2 Plasmon dispenian of Cs 
0.0 0.2 0.4 0.6 0.8 1 .O as in figure 1, but xc corrections 

are included wilhin the IDA. 

0.9 +---,-~-.~., , . ~  ,. ,. ~~,~~ ,.~.~~.. 

O = q A F  

PLASMON DISPERSION OF CESIUM USING S WITHIN THE RPA 

1.5 7 

full: homogeneous system / 
/ dashed: direction <loo> 

dotted: direction tl 10, 
dash-dotted: direction < 1  11 > 

crosses: experimental 

+ 
+ t i * +  Figure 3. Anisotmpy of the 

plasmon disperrion of CF in lhe 
WA using S, and H, in the WA. 

0.0 0.2 0.4 0.6 0.8 ne meaning of the line shapes is 
0 . g  , , , , I , /  / , / , ,  3 , 1 / 1 , 1  

O=q/kF as in figure 1. 

In figure 1 it is seen that the plasmon dispersion of Cs within the RPA does 
not agree with experiment. The xc corrections within the LDA, taken into account in 
figure 2, improve the agreement only slightly. The WDA, used in figures S 7 ,  gives rise 
to important xc corrections. This is mainly because F ( q ,  q') as given in (43) contains 
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1 ,5 PLASMON DISPERSION OF CESIUM USING S BY C&T 

full: homogeneous system I 
doshed: direction <loo>  
dotted: direction < 1  10, 

dash-dotted: direction tl 1 1 )  

crosses: exaerimental 

1.4 

i i +  

v-'-!-7 
Figure 4 As figure 3, but the HEG 
functions S, and H ,  are ralculated 

0.2 0.4 0.6 0.8 1.0 using the XC correction of Chacon 
and " m a  (51. 

0.9 0.0 i 
O=q/kF 

density derivatives of S, and H ,  which become large near q = 2k,, if S, exhibits a 
peak near q = 2k, (see figures 5 and 6). Because the arguments of F decompose 
into sums over a reciprocal lattice vcctor G and thc wavcvcctor of the plasmon k ,  
the peaks in the density derivatives become evident only near IG + 121 = 2kF. For 
given G and direction of k this is a quadratic equation for the modulus of It having 
zero, one or two solutions: 

where GII and G, are the parallel and perpendicular components of G with respect 
to k ,  respectively. This equation must be solved for each reciprocal lattice vector 
to provide the location of anomalies in k-space. For It oriented along the principal 
symmetry directions we obtain the values given in table 2 of [8]. The values which are 
smaller than qc are 0.43, 0.28, and 0.35 (in units of k,) when It is parallel to (100). 
(110), and ( l l l ) ,  respectively. Moreover, in the (110) direction we have a second 
solution at 0.82, which turns out to be the dominant one. The shape and strength 
of the anomalies cannot be anticipated completely without doing the full calculation. 
Some knowledge can be obtained from the behaviour of the centre of gravity which is 
predictable (see [SI). It should be mentioned that the anomalies produced by Fourier 
components beyond the (110) star (which are neglectcd in our numerical results) lie 
beyond the critical wavevector. 

All diagonal elements consist of zeroth- and second-order contributions F(") and 
F(2),  respectively. F(")  is given in (45) and F(') reads 
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I ,  - /t 
4) 



0.8 - 

I , ,  , , , , , , , , , ~ '-7 
0.0 0.2 0.4 0.6 0.8 1.0 

O=q/kF 

Figure 7. Anisotmpy of the 
plasmon dispersion as in figure 6, 
but for some p directions dose 
to (110). ?he full line is the 
KSuIl for the llEG and lhe crosses 
indicate lhe experimental result for 
plycryslalline Cs [XI. For the 
dashed lines the direction of q 
varies klween (110) (dolted) and 
(310) (funhest left minimum). 

In second-order perturbation theory, however, from all the diagonal elements of F(2), 
only the G = G' = 0 element appears in the result (see (49) and (50)). In this 
element the critical region near 2k, can never be reached. Thus it is a smooth 
function of q and the anomaly influences the result only via the off-diagonal elementS 
of F. Neglect of the off-diagonal elements of F (and x) removes the anomalies. 

Among all HEG approximations tested here that by Xipathy and Mandal [4] seems 
to be the only one which reproduces the experimentally observed anomaly at least 
qualitatively. Probably the minimum along (110) is too deep, i.e. the hump in S, 
is too high. On the other hand, according to Utsumi and Ichimaru [3] there is a 
small hump in S,, but its influence on the plasmon dispersion within the present 
treatment is too small (see figure 5). One has to take into account, however, that by 
the approximations additional to the WDA (see above) the influence of the anomaly 
is underestimated. This can be concluded by comparison of the present results with 
those using frequency momentum analysis [9], where the additional approximations in 
question are not necessary. Thus we cannot determine which of the HEG tm3tments 
is really the best. It is only clear that the hump in S, may lead to a considerable 
minimum in the plasmon frequency at the experimentally observed frequency. 

Moreover, the minimum in the plasmon frequency in figure 6 is too narrow. This 
discrepancy can be removed by consideration of directions in the vicinity Of (110) as 
shown in figure 7. Obviously this minimum is shifted to lower frequencies if we turn 
the wavevector out of the (110) direction and the mean over all directions will have 
a broader minimum. However, this is a qualitative argument, because the plasmon 
frequency of an polycrystalline sample is not simply the mean over all directions. 
A second problem is the minor structure in the theoretical curves near q / k ,  = 0.4 
which is not seen in the experimental data. It is not clear to what extent this StruCtUre 
is smeared out by effects of the non-crystalline nature of the samples. 
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Comparing the basic results of this theory with those obtained using frequency 
momentum analysis [9], we can state that in both treatments the hump in S, gives 
rise to anomalous behaviour of the plasmon frequency in Cs. It must be remembered, 
however, that in the frequency momentum analysis we investigate the centre of gravity 
of the loss function, which differs greatly from the zero of Re(€,,) when IC is large or 
when the plasmon peak (on the frequency scale) is broad. This has the consequence 
that in the present calculation along the (110) direction the minimum at 0.82 is much 
more pronounced than the Structure at 0.28, whereas in the frequency-momentum 
analysis the reverse is seen. The reason for this difference is that for large k the one- 
particle excitations, which are weakly influenced by electron correlations and which 
show no anomaly, contribute a lot to the centre of gravity, but not to the plasmon 
frequency as defined in this paper. Thus, for large k the anomalies in the centre of 
gravity are weaker than in the plasmon dispersion. There are two recent attempts 
to calculate the plasmon dispersion of the alkaline metals within the HEG model. 
Serra et al [27] obtained satisfactory results for the high-density metals Na and K, but 
failed for CS. Kalman et a1 [28] obtained a negative dispersion for CS treating it as a 
classical homogeneous plasma. They stressed that the frequency dependence of the 
XC correction is responsible for the minimum. The present investigations, however, 
showed that a minimum can be obtained without dynamical xc effects and that  the 
frequenq momentum analysis [9], which includes dynamical effects exactly, does not 
give qualitatively different results. 

6. Summary 

We have derived an xc correction matrix for the dielectric matrix of the 
inhomogeneous electron gas using non-local density functional theory. It is based 
on the WDA and it needs as input the Fourier transforms of the electron density as 
well as the static structure factor 3, from the theory of the homogeneous electron 
gas averaged over the coupling constant between 0 and e'. In the present application 
this average has been approximated by S, for the full coupling constant. 

The theory was applied to the plasmon dispersion of caesium, which exhibits 
a minimum near q / k ,  = 0.8. We adopted a simple pseudopotential model 
considering one star of reciprocal lattice vectors. Within this model, the one-particle 
susceptibility x and the macroscopic dielectric function cmac are calculated in second- 
order perturbation theory. It turns out that neither the RPA nor the XC corrections 
within the IDA nor more sophisticated xc corrections in the homogeneous electron 
gas can describe the plasmon dispersion in Cs. Within the WDA we obtain qualitative 
agreement with experiment, if we use a static structure factor S, which exhibits a 
considerable hump near 2kF, e.g. that of 'Itipathy and Mandal [4]. Quantitative 
agreement could not be the goal for this work because the experimental values are 
for polycrystalline material and our results for single crystals are strongly anisotropic. 
Moreover, for quantitative comparison we should go beyond our simple potential 
model and calculate x and emae on the basis of a full band structure calculation. 
Possibly, we have to consider the average over the coupling constant in the static 
structure factor as well. Only if both problems were solved and experimental =lues 
for single crystals were available could we proceed to final conclusions as to which of 
the approximations for the XC correction in the HEG is most suitable and how well 
the WDA works. 
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Appendix A. XC correction in r space within the WA 

From (17), (39 ,  (36) and (37) we obtain: 

F ( T , r ‘ )  = - go(. - r ’ ; 6 ( r ) )  + Cp(T - T ‘ ; l i ( T ‘ ) )  

- 1 C I ( 4  
2 DI(T) 1(r 1 

2 171 --TI D l ( T 1 )  

d - U  
d 6  

1 1 
J dr 
-~ 

2 lrl - r’l D1(rl) 
d - U  

d 6  

2 - 11 

[eu(T - T ’ ; % ( T ) )  - 11 - 20- - T ’ ; 6 ( ? ” ) )  - 11 

- i/dvln(rl)-- 1 1 

x --9 (TI  - T ; f i ( T l ) )  

- R r ( 

x - g  (rl - r’; 6(r1))  

Observe that DU(r) = -1 is the sum rule for the XC hole. 
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Appendix B. Semilocal approximation 

Here we discuss an alternative procedure specifying the function iL(r,r’) in (36). 
The ansaa 

for (36) and (35) generates a family of semilocal approximations. The parameter 
a may be chosen so that the sum rule of the xc hole or any other requirement is 
optimally fulfilled. For 0 < a < 1, ~ L ( T , T ’ )  is smoother than n ( ~ ) .  This trend agrees 
with the behaviour of the weighted density 6 ( r )  discussed in section 3.5. 

We give here the result in the HEG limit only 

@ ( g , q ’ )  = bq,q,{  [I t (a/2)n(d/dn)]’Ug(n)+ a n [ 1  t (a /2)d /dn] (d /dn)Ri}  

+ 6,,,6q,,o x constant. (B2) 

The first term in the bracket of (82) has the required limiting behaviour whereas the 
second one is anstant  and therefore as wrong as the LDA is. ’Ifacing back the origin 
of this defect leads us to the fact that g ( r , ? ’ )  in our ansua (Bl) is a function of 
71(r) and n(r‘) .  Thus some local character is retained leading to terms in F“ which 
behave like the LDA. Only in the case U = 0, where 6 = no, and in [he full WDA 
(see section 3.9, fi and therefore g is afunctional of n ( r )  and therefore thc correct 
behaviour in the HEG limit is obtained. 
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